Questions

Q1.

Show that

$$
\begin{equation*}
\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x=\frac{32}{15}(2+\sqrt{2}) \tag{7}
\end{equation*}
$$

Q2.
(a) Use the substitution $x=u^{2}+1$ to show that

$$
\int_{5}^{10} \frac{3 \mathrm{~d} x}{(x-1)(3+2 \sqrt{x-1})}=\int_{p}^{q} \frac{6 \mathrm{~d} u}{u(3+2 u)}
$$

where p and q are positive constants to be found.
(b) Hence, using algebraic integration, show that

$$
\int_{5}^{10} \frac{3 \mathrm{~d} x}{(x-1)(3+2 \sqrt{x-1})}=\ln a
$$

where a is a rational constant to be found.

Q3.
(a) Use the substitution $u=1+\sqrt{x}$ to show that

$$
\int_{0}^{16} \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int_{p}^{q} \frac{2(u-1)^{3}}{u} \mathrm{~d} u
$$

where p and q are constants to be found.
(b) Hence show that

$$
\int_{0}^{16} \frac{x}{1+\sqrt{x}} \mathrm{~d} x=A-B \ln 5
$$

where A and B are constants to be found.

Q4.
(a) Use the substitution $u=4-\sqrt{h}$ to show that

$$
\int \frac{\mathrm{d} h}{4-\sqrt{h}}=-8 \ln |4-\sqrt{h}|-2 \sqrt{h}+k
$$

where k is a constant
A team of scientists is studying a species of slow growing tree.
The rate of change in height of a tree in this species is modelled by the differential equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{0.25}(4-\sqrt{h})}{20}
$$

where h is the height in metres and t is the time, measured in years, after the tree is planted.
(b) Find, according to the model, the range in heights of trees in this species.

One of these trees is one metre high when it is first planted.
According to the model,
(c) calculate the time this tree would take to reach a height of 12 metres, giving your answer to 3 significant figures.

Mark Scheme

Q1.

Question Alt	Scheme for by parts	Marks	AOs
	Chooses a suitable method for $\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x$ Award for - using by parts the correct way around - and using limits	M1	3.1a
	$\int(\sqrt{x+2}) \mathrm{d} x=\frac{2}{3}(x+2)^{\frac{3}{2}}$	B1	1.1b
	$\int 2 x \sqrt{x+2} \mathrm{~d} x=A x(x+2)^{\frac{3}{2}}-\int B(x+2)^{\frac{3}{2}}(\mathrm{~d} x)$	M1	1.1b
	$=A x(x+2)^{\frac{3}{2}}-C(x+2)^{\frac{5}{2}}$	dM1	2.1
	$=\frac{4}{3} x(x+2)^{\frac{3}{2}}-\frac{8}{15}(x+2)^{\frac{5}{2}}$	A1	1.1b
	Uses limits 2 and 0 the correct way around	ddM1	1.1b
	$=\frac{32}{15}(2+\sqrt{2})$	A1*	2.1
		(7)	

M1: For attempting using by parts to solve It is a problem-solving mark and all elements do not have to be correct.

- the formula applied the correct way around. You may condone incorrect attempts at integrating $\sqrt{x+2}$ for this problem solving mark
- further integration, again, this may not be correct, and the use of at least the top limit of 2

B1: For $\int(\sqrt{x+2}) \mathrm{d} x=\frac{2}{3}(x+2)^{\frac{3}{2}}$ oe May be awarded $\int_{0}^{2} 2 x \sqrt{x+2} \mathrm{~d} x \rightarrow x^{2} \times \frac{2(x+2)^{\frac{3}{2}}}{3}$
M1: For integration by parts the right way around. Award for $A x(x+2)^{\frac{3}{2}}-\int B(x+2)^{\frac{3}{2}}(\mathrm{~d} x)$ dMI: For integrating a second time. Award for $A x(x+2)^{\frac{3}{2}}-C(x+2)^{\frac{5}{2}}$

Al: $\frac{4}{3} x(x+2)^{\frac{3}{2}}-\frac{8}{15}(x+2)^{\frac{5}{2}}$ which may be un simplified
ddMII: Dependent upon the previous M , it is for using the limits 2 and 0 the correct way around
Al*: Proceeds to $=\frac{32}{15}(2+\sqrt{2})$. Note that this is a given answer.
At least one correct intermediate line must be seen. (See substitution). You would condone missing dx's

Q2.

Question	Scheme	Marks	AOs
(a)	$x=u^{2}+1 \Rightarrow \mathrm{~d} x=2 u \mathrm{~d} u$ oe	B1	1.1b
	Full substitution $\int \frac{3 \mathrm{~d} x}{(x-1)(3+2 \sqrt{x-1})}=\int \frac{3 \times 2 u \mathrm{~d} u}{\left(u^{2}+1-1\right)(3+2 u)}$	M1	1.1b
	Finds correct limits e.g. $p=2, q=3$	B1	1.1b
	$=\int \frac{3 \times 2 \mu n \mathrm{~d} u}{u^{z}(3+2 u)}=\int \frac{6 \mathrm{~d} u}{u(3+2 u)} *$	A1*	2.1
		(4)	
(b)	$\frac{6}{u(3+2 u)}=\frac{A}{u}+\frac{B}{3+2 u} \Rightarrow A=\ldots, B=\ldots$	M1	1.1b
	Correct PF. $\frac{6}{u(3+2 u)}=\frac{2}{u}-\frac{4}{3+2 u}$	A1	1.1b
	$\int \frac{6 \mathrm{~d} u}{u(3+2 u)}=2 \ln u-2 \ln (3+2 u) \quad(+c)$	$\begin{aligned} & \mathrm{dM} 1 \\ & \mathrm{~A} 1 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Uses limits $u=" 3 ", u=" 2$ " with some correct \ln work leading to $k \ln b \quad$ E.g. $\quad(2 \ln 3-2 \ln 9)-(2 \ln 2-2 \ln 7)=2 \ln \frac{7}{6}$	M1	1.1b
	$\ln \frac{49}{36}$	A1	2.1
		(6)	
(10 marks)			
Notes: Mark (a) and (b) together as one complete question			

(a)

B1: $\mathrm{d} x=2 u \mathrm{~d} u$ or exact equivalent. E.g. $\frac{\mathrm{d} x}{\mathrm{~d} u}=2 u, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2}(x-1)^{\frac{1}{2}}$
M1: Attempts a full substitution of $x=u^{2}+1$, including $\mathrm{d} x \rightarrow \ldots u \mathrm{~d} u$ to form an integrand in terms of u. Condone slips but there should be an attempt to use the correct substitution on the denominator.
B1: Finds correct limits either states $p=2, q=3$ or sight of embedded values as limits to the integral
Al*: Clear reasoning including one fully correct intermediate line, including the integral signs, leading to the given expression ignoring limits. So B1, M1, B0, A1 is possible if the limits are incorrect, omitted or left as 5 and 10 .
(b)

M1: Uses correct form of PF leading to values of A and B.
Al: Correct $\mathrm{PF} \frac{6}{u(3+2 u)}=\frac{2}{u}-\frac{4}{3+2 u} \quad$ (Not scored for just the correct values of A and B)
dMI : This is an overall problem solving mark. It is for using the correct PF form and integrating using lns.
Look for $P \ln u+Q \ln (3+2 u)$
Alft: Correct integration for their $\frac{A}{u}+\frac{B}{3+2 u} \rightarrow A \ln u+\frac{B}{2} \ln (3+2 u)$ with or without modulus signs
Ml: Uses their 2 and 3 as limits, with at least one correct application of the addition law or subtraction law leading to the form $k \ln b$ or $\ln a$. PF's must have been attempted. Condone bracketing slips. Alternatively changing the u 's back to x^{\prime} 's and use limits of 5 and 10 .
Al: Proceeds to $\ln \frac{49}{36}$. Answers without working please send to review.

Q3.

Question	Scheme	Marks	AOs
(a)	$u=1+\sqrt{x} \Rightarrow x=(u-1)^{2} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} u}=2(u-1)$ or $u=1+\sqrt{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}}$	B1	1.1b
	$\begin{gathered} \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{(u-1)^{2}}{u} 2(u-1) \mathrm{d} u \\ \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times 2 x^{\frac{1}{2}} \mathrm{~d} u=\int \frac{2 x^{\frac{2}{2}}}{u} \mathrm{~d} u=\int \frac{2(u-1)^{3}}{u} \mathrm{~d} u \end{gathered}$	M1	2.1
	$\int_{0}^{16} \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int_{1}^{5} \frac{2(u-1)^{3}}{u} \mathrm{~d} u$	A1	1.1b
		(3)	
(b)	$2 \int \frac{u^{3}-3 u^{2}+3 u-1}{u} \mathrm{~d} u=2 \int\left(u^{2}-3 u+3-\frac{1}{u}\right) \mathrm{d} u=\ldots$	M1	3.1a
	= (2) $\left[\frac{u^{3}}{3}-\frac{3 u^{2}}{2}+3 u-\ln u\right]$	A1	1.1b
	$=2\left[\frac{5^{3}}{3}-\frac{3(5)^{2}}{2}+3(5)-\ln 5-\left(\frac{1}{3}-\frac{3}{2}+3-\ln 1\right)\right]$	dM1	2.1
	$=\frac{104}{3}-2 \ln 5$	A1	1.1b
		(4)	
(7 marks)			

Notes

(a)

B1: Correct expression for $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ (or u^{\prime}) or $\mathrm{d} x$ in terms of $\mathrm{d} u$ or $\mathrm{d} u$ in terms of $\mathrm{d} x$
M1: Complete method using the given substitution.
This needs to be a correct method for their $\frac{\mathrm{d} x}{\mathrm{~d} u}$ or $\frac{\mathrm{d} u}{\mathrm{~d} x}$ leading to an integral in terms of u only (ignore any limits if present) so for each case you need to see:
$\frac{\mathrm{d} x}{\mathrm{~d} u}=\mathrm{f}(u) \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{(u-1)^{2}}{u} \mathrm{f}(u) \mathrm{d} u$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=\mathrm{g}(x) \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{\mathrm{d} u}{\mathrm{~g}(x)}=\int \mathrm{h}(u) \mathrm{d} u$. In this case you can condone
slips with coefficients e.g. allow $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{x^{\frac{1}{2}}}{2} \mathrm{~d} u=\int \mathrm{h}(u) \mathrm{d} u$
but not $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{-\frac{1}{2}} \rightarrow \int \frac{x}{1+\sqrt{x}} \mathrm{~d} x=\int \frac{x}{u} \times \frac{x^{-\frac{1}{2}}}{2} \mathrm{~d} u=\int \mathrm{h}(u) \mathrm{d} u$
A1: All correct with correct limits and no errors. The " $\mathrm{d} u$ " must be present but may have been omitted along the way but it must have been seen at least once before the final answer. The limits can be seen as part of the integral or stated separately.
(b)

M1: Realises the requirement to cube the bracket and divide through by u and makes progress with the integration to obtain at least 3 terms of the required form e.g. 3 from $k u^{3}, k u^{2}, k u, k \ln u$
A1: Correct integration. This mark can be scored with the " 2 " still outside the integral or even if it has been omitted. But if the " 2 " has been combined with the integrand, the integration must be correct.
dM1: Completes the process by applying their "changed" limits and subtracts the right way round Depends on the first method mark.
A1: Cao (Allow equivalents for $\frac{104}{3}$ e.g. $\frac{208}{6}$)

Q4.

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$\mathrm{d} h=-2(4-u) \mathrm{d} u$	B1	This mark is given for finding an expression for $\mathrm{d} h$
	$\int \frac{\mathrm{d} h}{4-\sqrt{h}}=\int \frac{-2(4-u) \mathrm{d} u}{4-\sqrt{h}}$	M1	This mark is given for substituting $u=4-\sqrt{h}$ into the integral
	$=\int-\frac{8}{u}+2 \mathrm{~d} u$	M1	This mark is given for a method to find a simplified version of the integral
	$\begin{aligned} & -8 \ln u+2 u+c \\ & =-8 \ln (4-\sqrt{ } h)+2(4-\sqrt{ } h)+c \end{aligned}$	M1	This mark is given for integrating with respect to u to produce an expression in terms of h
		A1	This mark is given for a correct expression for the integral
	$=-8 \ln (4-\sqrt{h})-2 \sqrt{ } h+k$	A1	This mark is given for a full proof to arrive at the answer as shown (appreciating that $k=c+8$)
(b)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=0 \Rightarrow 4-\sqrt{ } h=0$	M1	This mark is given for a setting $\frac{\mathrm{d} h}{\mathrm{~d} t}=0$
	$0<h<16$	A1	This mark is given for deducing the range of the heights of the trees for this model

(c)	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{t^{025}(4-\sqrt{ } h)}{20} \Rightarrow \frac{\mathrm{~d} h}{(4-\sqrt{ } h)}=\frac{t^{025} \mathrm{~d} t}{20}$	B 1	This mark is given for separating the variables
$-8 \ln (4-\sqrt{ } h)-2 \sqrt{ } h+k=\frac{t^{125}}{25}$	M 1	This mark is given for a method to integrate both sides of the equation	
	A 1	This mark is given for integrating both sides of the equation correctly	
	M 1	This mark is given for substituting values of $t=0$ and $h=1$ to find a value for k	
	M 1	This mark is given for a method to find a value fot t by substituting $h=12$ into the equation	
	M 1	This mark is given for simplifying to find an expression for t	
$t=75.2$ years	A 1	This mark is given for correctly finding the time the tree would take to reach a height of 12 metres	

